The Westinghouse Advanced Passive Pressurized Water Reactor, **AP1000**[™]

Roger Schène Director, Engineering Services

Background

- Late '80: USA Utilities under direction of EPRI and endorsed by NRC : Advanced Light Water Reactor Utility Requirements Document (URD) with policy and design requirements for next generation
- In Europe similar document European Utility Requirements (EUR)
- **Passive** is also *simpler*, *smaller* and *much improved*
- Passive has much higher expectations (ex. maintain safe shutdown for 72 hrs. after design base event w/o operator action vs. 30' for evolutionary)

Simplification and Standardization are Key to Future Nuclear Plant Construction

- Simplicity and standardization in **Design** through reduced number of components and bulk commodities
- Simplicity in **Safety** through use of passive safety systems
- Simplicity in **Construction** through modularization
- Simplicity in **Procurement** through standardization of components and plant design
- Simplicity in Operation and Maintenance through use of proven systems and components, and man-machine interface advancements

Improved Safety, Competitive Economics and Good Performance

AP1000 Investment in Technology

AP1000 Design Certification Received From NRC 12/30/05

THE PLANT

- Our Design Certification includes:
 - Containment
 - Auxiliary Building
 - Annex Building
 - Turbine Building
 - Radwaste Building
 - Diesel Generator Building
 - Everything in Buildings

- It is based upon:
 - Passive Core Cooling
 - Passive Control Room
 Habitability
 - Passive Containment
 Cooling
 - Passive Fire Protection
 - Passive Security
 - Features

AP1000 Addresses Security Needs

- Passive plants are less vulnerable to aircraft impact –
 - Smaller footprint
 - Fewer safety-related components
 - Fewer safety systems outside containment
- NEI/EPRI study shows containment integrity maintained after aircraft impact
- Westinghouse interacting closely with US NRC regarding security
- Westinghouse working with EPP utility group on hardening building for airplane crash resistance capability

AP1000 Reactor Coolant System*

Familiar but Improved Reactor Coolant System

- Fuel, Internals, Reactor Vessel
 - -Top-mounted fixed in-core instrumentation
 - Ring-forged reactor vessel (no longitudinal welds)
 - -Improved materials 60 yr life
 - –All-welded core shroud (not bolted)
- Steam Generators
 - -Similar to large Westinghouse SGs in operation

Reactor Coolant System Loop – Building Interface and Primary Shield

• Hot Leg ID (31 in), Cold Leg ID (22 in), and Surge Line ID (18 in)

Proven AP1000 Major Components

- Canned motor Reactor Coolant Pumps mounted in steam generator lower head
 - No shaft seals
- Simplified Main Loop
 - Reduces welds 50%, supports 80%
- Pressurizer
 - 50% larger than operating plants
 - Eliminate PORV

Proven AP1000 Components

Reactor Vessel Internals

Comparison of Selected Parameters

PARAMETER	Doel 4 / Tihange 3	AP1000
Net Electric Output, MWe	985	1117
Reactor Power, MWt	2988	3400
Hot Leg Temperature, °F	626	610
Number of Fuel Assemblies	157	157
Type of Fuel Assembly	17x17	17x17
Active Fuel Length, ft	14	14
Linear Heat Rating, kW/ft	5.02	5.71
R/V I.D., inches	157	157
Vessel Thermal Design Flow, gpm	295,500	299.880
Steam Generator Surface Area, ft ²	68,000	125,000
Reactor Coolant Pump Flow, gpm	103,400	78 750
Pressurizer Volume, ft ³	1400	2100

Advanced Control Room

14

AP1000 Main Control Area Layout

Security – Related Information – Withhold under 10CFR2.390

© 2007 Westinghouse Electric Company LLC

Main Control Room 3D Model (2)

Major Safety Advancements of AP1000

- No Reliance on AC Power
- No Operator Action Required to Assure Safety
- Long Term Plant Safety Assured without Active Components (Natural Forces Only)
- Containment is Not Breached for Postulated Design Basis Events
- In Severe Accidents, Reactor Vessel Cooling Keeps Core in Vessel
- Large Margin to Safety Limits
- Defense in Depth Active Systems Provide ADDITIONAL first line of defense

Passive Safety – What's it all about?

- Passive Safety Systems utilizes naturally occurring physical phenomena such as natural circulation of air, water and steam
- Gravity and gas pressure drive the flow of cooling water
- Natural heat transfer occurs through conduction, convection and evaporation
- There are no safety related pumps and motor-operated valves
- A few battery powered valves align the passive safety systems upon actuation signals
- Reactor safety functions are achieved without using any safety related AC power

Approach to Safety

- Passive safety-related systems
 - Use "passive" process only, no active pumps, diesels, ...
 - One time alignment of valves
 - No support systems required after actuation
 - No ac power, cooling water, HVAC, I&C
 - Greatly reduced dependency on operator actions
 - Mitigate design basis accidents without non-safety systems
 - Meet NRC PRA safety goals without use of non-safety systems
- Active non-safety-related systems
 - Reliably support normal operation
 - Redundant equipment powered by on-site diesels
 - Minimize challenges to passive safety systems
 - Not required to mitigate design basis accidents

AP1000 Passive Safety Injection

Simplification of Safety Systems Dramatically Reduces Building Volumes

Simplicity in Design and Safety

- Proven 2 loop reactor coolant system with canned motor pumps
- Use of passive safety systems
- No reliance on safety grade AC power
- In vessel retention for severe accidents
- No operator action for 72 hours

Passive Core Cooling System at Work

Passive Containment Cooling System

Severe Accident Mitigation In-Vessel Retention

•Core melt scenario AP1000 designed to retain core debris <u>within the</u> reactor vessel

Cooling water flow path in vessel/insulation annulus
 Cooling flow driven by natural circulation
 Water source: In containment refueling water storage tank
 Automatic depressurization
 Large release frequency:

25

URD requires < 10-6

5.9 x 10-8 per reactor year;

AP1000 Most Tested Reactor

© 2007 Westinghouse Electric Company LLC

Nestinghouse

Passive Containment Cooling Test Facility Demonstrated the Effectiveness of Passive Containment Cooling

27

AP1000 Passive Safety System Design Improves **Economics and Construction Schedule**

AP1000 Provides Safety and Investment Protection

Comparison of Seismic Category I Buildings

AP1000 Construction Simplification

Think: 1) more power/m³ of concrete, 2) less to decommission

Modules Designed into AP1000 from the Beginning

- Structural steel and plate modules designed to be fabricated, outfitted, installed and then filled with concrete after installation.
- The process effectively removes the reinforcing steel installation (typically a largely manual operation) from the work face to the fabrication facility and implements it in parallel with other installation activities.
- The scope and content of these modules includes multi floors, rooms/areas and all disciplines.

Modular Construction Allows More To Be Done in Parallel Result: Shorter Construction Schedule

CA 20 Overview

- Overall Dimensions:
 - Width: 46.5 ft.
 - Length: 67.3 ft.
 - Height: 68.8 ft.
- Estimated Weight:
 - Walls and Floors: 770 tons
 - Outfitting (components, piping, rebar): 89 tons
 - Total Outfitted: 859 tons

CA 20 view with walls removed to show outfitted equipment prior to installation

Composite Structural Module CA 01

Steel Plate Structural Wall Module*

•CA 01

39

Construction Program

Westinghouse

40

The Westinghouse AP1000TM

41

Meets European Utility Requirements

- EUR (European Utility Requirements) effort launched in December 1991 by five European Utilities, later joined by six others
- AP1000 compliance assessment is detailed and thorough: over 5000 requirements have been assessed
- EUR Certified

Proposed AP1000 Sites in U.S.

AP1000 Units in China

Two units at Haiyang Two units at Sanmen

Preliminary design, engineering and long-lead procurement work has already begun.

Power plant construction is expected to begin in 2009, with the first plant becoming operational in late 2013. The remaining plants are expected to come online in 2014 and 2015.

Questions

