

Hervé Baron

Nov 29th, 2010

Today's Projects:

The main challenges and the Key factors of success

<u>Overall Contractor responsibility</u>: EPC (Engineering, Procurement, Construction) <u>Mega Projects:</u> > USD 1bln <u>Multiple locations & actors:</u> Low cost centers, Construction sub-contracted <u>Schedule:</u> Drastically tightened

What are the main challenges ?

- Technical ?
- Cost ?
- Quality ?
- Schedule ?
- Size ?
- Safety

The Key factors of success?

Schedule:

=> adapt to concurrent rather than sequential execution

- Get the design input early... but get it right!
- Avoid changes and re-works
- Integrate the E, P and C work processes

Size:

=> Develop and implement precise controls

- Know your actual progress!
- Control your suppliers and sub-contractors

From sequential to concurrent execution...

The Past: sequential execution

The Present: concurrent execution

Derived challenges:

- Get the design input early
- Avoid changes and re-works
- Integrate the E, P and C work processes

Getting the design input early

Engineering is the integrator of the Plant equipment, and is highly dependent on vendor data

But get it right!

Engineering must be right first time, which requires experience, good coordination between disciplines and anticipation

Integrate the work processes

The Construction Sub-contractor is paid a fixed amount for a ton of steel installed It is uncertain about the actual delivery schedule of drawings and materials, wants to avoid stand-by

Engineering to up-date the Construction sub-contractor with **work volumes** and **delivery schedules** for Construction subcontractor to plan and mobilize efficiently

	Latest weight (MT)	Fabrication	Galvanizing	Inspection.	Delivered to Site Status					
Structure Identity		comp.%	comp.%	comp.%	Frames Wt. (MT)	comp.%	Bolts + Misc Qty.	comp.%	Foreact delivery completion date	
80-PR-03E	24.12	100	91	91	21.97	91	26-Nov-07	100	25-Dec-07	
80-PR-07E	22.32	100.0	59	31	7.00	31	partially del. 26-11-07	99	07-Jan-08	
92-STG-063	13.88	100					26-Nov-07	100	27-Jan-08	
95-STG-61	22.07	100	100	100	22.06	100	07-Oct-07	100		

Integrate the work processes

Develop Engineering / Construction synergies

- Constructability reviews
- Pre-fabrication
- Engineering schedule to match Construction priorities/sequences
 Engineering deliverables tailored to construction

execution needs

Avoid changes

Sources of changes:

- Inherited/Open technical issues
- Design development & Reviews
- Client's new requirements
- 3rd party at interface

Resist avoidable changes – Contractual management Impact of changes is exponential with time: implement early!

- Interface management,
- System to identify all impacts and track implementation of changes

Know your Project's progress

The principles:

- Draw the list of work items, total = 100%
- Actual progress = Σ individual progress over all work items

The challenge:

- The list of work items keeps changing difficulty to keep track
- The total work volume (100%) keeps changing
- Increase by up to 30-50% are common

The keys:

- Overall progress from detailed breakdown by individual work item/steps
- Monitoring from up-to-date list of work items

Set-up an accurate progress measure

The overall picture is accurate...

lf :

- its derives from progress of **elementary** work items
- It reflects the true work volume, i.e., is based on **up-dated** list of work items

How are the electrical works doing?

How to monitor construction progress, the case of Electrical cables for a FPSO: 254 km of Electrical cablesto pull, gland, terminate. What is the progress?

How are the electrical works doing?

Individual item (cable) and work step (pull/gland/terminate) status

Cable tag	From_tag	To_tag	Date pulled	Date Gland From Tag	Date Term. From Tag	Date Gland To Tag	Date Term. To Tag
C-1-A-FAN-43802-A	1-A-CPL-43801	1MC-LV23	8-Mar-05				
C-1-A-FAN-43802-B	1-A-CPL-43802	1-CPL-0866-2/13/14	8-Mar-05				
C-1-A-FAN-43803-A	1-A-CPL-43801	1MC-LV22	8-Mar-05				
C-1-A-FAN-43803-B	1-A-CPL-43802	1-CPL-0866-2/13/14	8-Mar-05				
C-1-A-LCS-1WBE-83124	1MC-LV24	1-A-LCS-1WBE-83124	2-Mar-05				
C-1-A-LCS-1WBE-83131A	1MC-LV24	1-A-LCS-1WBE-83131/	2-Mar-05				
C-1-A-LCS-1WBE-83131B	1MC-LV24	1-A-LCS-1WBE-83131	2-Mar-05				
C-1-A-LCS-LV-01-A	1-A-EMG-UCP-01	1-A-LCS-LV-01	4-Mar-05	20-Mar-05	21-Mar-05		
C-1-A-LCS-LV-01-B	1-A-EMG-UCP-01	1-A-LCS-LV-01	4-Mar-05	20-Mar-05	21-Mar-05		
C-1-A-LCS-LV-02-A	1-A-EMG-UCP-01	1-A-LCS-LV-02	4-Mar-05	20-Mar-05	21-Mar-05		
C-1-A-LCS-LV-02-B	1-A-EMG-UCP-01	1-A-LCS-LV-02	4-Mar-05	20-Mar-05	21-Mar-05		
C-1-A-LES-1WAL-41105	2MC-LV07	1-A-LES-1WAL-41105					
C-1-A-LES-1WAL-41110	2MC-LV07	1-A-LES-1WAL-41110					
C-1-A-LES-FAN-43802	1MC-LV23	1-A-LES-FAN-43802	8-Mar-05				
C-1-A-LES-FAN-43803	1MC-LV22	1-A-LES-FAN-43803	8-Mar-05				
C-1BC-DC26	1-A-MCC-MCD-01	1BC-DC26					
C-1-B-FAN-43801-A	1-B-CPL-43801	1MC-LV24	3-Mar-05			12-mars-05	13-Mar-05
C-1-B-FAN-43801-B	1-B-CPL-43801	1MC-LV24	3-Mar-05			12-mars-05	13-Mar-05

Description	Electrical
Total cable quantity (nos.)	5 377
Quantity pulled (nos.)	4 438
Balance quantity to pull (nos.)	939
Total glands (nos.)	10 754
Total termination (nos.)	10 754
Completed gland (nos.)	5 280
Completed termination (nos.)	5 267
Balance to gland (nos.)	5 474
Balance to terminate (nos.)	5 487

Control your suppliers and sub-contractors

- " You get what you inspect, not what you expect "
- Know your supplier work process/steps
- Implement tight followup/expediting
- Access you supplier's systems

Job	Descr	Weight	Drawing Office	Planning	Fabricated	Sub Treatment	Treated	Loaded	% Fabricated	% Galvanized	% Delivered
60307	80-PR-13E	65.3864	0	0	0	0	0	65.3864	100.0%	100.0%	100.0%
60308	80-PR-12E	32.6998	0	0	0	0	0	32.6998	100.0%	100.0%	100.0%
60310	80-PR-19 (Pat -01)	56.1923	0	0	0	0	0	56.1923	100.0%	100.0%	100.0%
60311	80-PR-18	234.6891	0	0	0.6278	47.7529	0	178.7163	76.4%	76.2%	76.2%
60312	80-PR-27 (part - 02)	83.2827	0	0	0	0	0	83.2827	100.0%	100.0%	100.0%
60313	80-PR-19 (Pat -03)	126.7195	0	0	0	5.0505	0	121.669	96.0%	96.0%	96.0%
60314	80-PR-19 (Pat -02)	145.2883	0	0	10.2572	0.6449	0	129.3894	96.1%	89.1%	89.1%